
November 13, 2024 15:24 output

A Survey on Code Representation

Peter D. Nagy∗ and Marzieh Ahmadi Najafabadi∗ and Heidar Davoudi∗

Recently, many machine learning models have been proposed to understand and
analyze Programming Languages (PLs). While there are some similarities be-
tween PLs and Natural Language Processing (NLP), the former one has its own
unique challenges. In this survey, we investigate current approaches tackling rep-
resentation learning of codes and associated downstream tasks that can be solved
with them. We present and compare the state-of-the-art models specifically de-
signed for embedding PLs in low dimensional space, and demonstrate how these
embedding methods are related to representation learning approaches in NLP. We
also compare benchmark experiments on multiple code-related tasks and evaluate
the models for each specific application.

Keywords: Code Embedding, Code Representation, Transformers, Natural

Language Embedding, Programming Languages

1. Introduction

Over the past decade, there has been a significant advancement in Natural Language

Processing (NLP) approaches analyzing and comprehending text. Many of these re-

markable achievements are due to the power of deep learning techniques applied to

various tasks in the NLP domain. In particular, recent pre-trained machine learn-

ing models such as BERT1, BART2, RoBERTa3, T54, GPT5, ELMo6 and XLNet7

made a huge improvement in the performance of a variety of natural language pro-

cessing tasks. These pre-trained models learn important contextual representations

from different unlabeled texts by optimizing self-supervised objectives (e.g., masked

language modeling).

Programming languages (PLs) are different from natural languages (NLs) as

they conform to a specific syntax and have rich structural information. Therefore,

adapting the existing deep pre-trained NLP models to PLs requires the considera-

tion of the code’s structure and relationships between program entities. Moreover,

we can build pre-trained models by utilizing both NL and PL pairs (i.e., bimodal

data). That is, programming codes and their comments, documentations, and speci-

fications are fed into the model to capture the semantic representations of codes and

descriptions together. This paper reviews the current state-of-the-art deep learning

models designed to capture the semantic representation of codes in low-dimensional

data.

In this survey, we conduct a thorough review of the current state-of-the-art mod-

els for code representation and compare them on benchmark downstream tasks. We

∗Faculty of Science, Ontario Tech University, Canada {peter.nagy, marzieh.ahmadinajafabadi,
heidar.davoudi}@ontariotechu.ca

1

November 13, 2024 15:24 output

2

also present available codes and datasets in the PL field. The paper is organized

as follows. In Section 2, we present a short background and preliminaries. In Sec-

tion 3, we explain the current state-of-the-art pre-trained machine learning models

on PL while dividing them into two categories: Transformer type models and other

non-transformer architectural models. We also provide available GitHub and Hug-

gingFace links for the presented models. In Section 4, we provide descriptions of the

most important and common datasets in the PL domain. In Section 5, we explain

different PL downstream tasks along with the performance metrics used to evalu-

ate each task. Furthermore, we compare evaluation metrics reported by previous

works on different models and different datasets. Finally, we draw our conclusion

in Section 6. Figure 1 shows the structure of this paper.

Code Representation Survey

1. Introduction 2. Background 3. Representation Learning
Models for PLs

4. Datasets 5. Downstream
Tasks

6. Conclusion &
Future Work

2.1. Representation
Learning

2.2. Structures in
PLs

3.1. Transformer
Models

3.2. Non-Transformer
Models

3.1.1 CodeBERT
3.1.2. GraphCodeBERT

3.1.3. CodeT5
3.1.4. PLBART

3.1.5. Codex
3.1.6. CodeTrans

3.1.7. UniXcoder
3.1.8. TreeBERT

3.1.9. ContraCode
3.1.10. CuBERT

3.1.11. Code-MVP
3.1.12. CodeGPT

3.1.13. SynCoBERT
3.1.14. CoTexT

4.1. CodeXGLUE
4.2. CodeSearchNet

4.3. CoDesc
4.4. APPS

4.5. HumanEval
4.6. BigCloneBench

4.7. POJ-104
4.8. Devign

4.9. CSN
4.10. AdvTest

4.11. CoSQA
4.12. CoNaLa

4.13. PY150
4.14. GREAT

4.15. GitHub Java Corpus
4.16. Java Datasets

4.17. Bugs2Fix
4.18. CONCODE

4.19. AlgoLisp
4.20. CodeTrans

4.21. CodeNet
4.22. DeepCom's Java Dataset

4.23. ContraCode’s Datasets
4.24. CODE-NN's Dataset

3.2.1. Code2vec

5.1. Code Generation

5.2. Code Summarization

5.3. Code Repair

5.4. Code Search

5.5. Code Clone Detection

5.6. Method Name Generation

5.7. Defect Detection

5.8. Code Completion

5.9. Code Translation

5.10. Code-to-Code Search

3.3. Available
Code

3.2.2. Code2seq

Fig. 1: The structure diagram of the paper.

November 13, 2024 15:24 output

3

2. Background

2.1. Representation Learning

There has been a growing interest in the field of representation learning over the past

decade8–10. In representation learning, the goal is to capture the semantic represen-

tation of instances (e.g., text documents, words, images) in a low-dimensional vector

space. That is, each instance is represented by a vector representing its rich set of

features. The information captured in the representation vectors (i.e., embedding)

can be used in many downstream tasks, such as similarity search11, classification12,

and clustering13 and it reduces/eliminates the need for expert knowledge in feature

engineering.

For example, in the NLP domain, context-free models such as word2vec9 and

GloVe14 learn word representations without considering the context of words (e.g.,

the sentence in which they are appearing). However, many words have different

meanings depending on the context they are used (e.g., “Apple” for instance, may

be the name of a company or a fruit depending on the context). A context-based

model, such as BERT1, learns representations based on the context in which words

appear. Therefore, BERT is more powerful in learning semantically meaningful

representations that capture context-dependent meanings of words.

Most often, models such as BERT are optimized by supervised-training. That is,

randomly selected tokens are masked from the input sentence before going through

the encoder. The encoder learns the embedding vectors for each word/token in the

sentence in order to predict the most likely word/token for each masked word/token.

This process does not require manually annotated data and can take advantage of

large unlabelled training data which is available in many domains.

2.2. Structures in Programming Languages

In order to understand the semantics of the code, we need to learn about the

basic structures in the code and the way of extracting them. This is important

as multiple methods15–21 have leveraged the code’s structural representation in

order to incorporate the structure of the code containing crucial code semantics

into the embedding space. A lexical analyzer or tokenizer is used to convert the

code to a token-based sequence in which the order of tokens follows the order of

their appearance in the code. Then, some models opt to utilize a parser, which

is also known as a syntax analyzer, that produces an abstract syntax tree (AST)

from the token-based sequence based on the grammar rules. Several studies have

focused on implementing frameworks leveraging AST representations of code22–24.

The root node in this tree is the start symbol of the grammar, the interior nodes

are the non-terminals in the grammar, and the leaf nodes are the terminals, which

are code tokens such as programming language specific keywords, variables, and

identifiers defined by the programmer. Finally, a semantic analyzer can utilize the

AST representation to generate flow graphs that contain the semantic information

of the source code. There are two common flow graphs:

November 13, 2024 15:24 output

4

• Control Flow Graph (CFG): this graph illustrates different possible execu-

tion paths of a program.

• Data Flow Graph (DFG): this graph presents the relationships between the

segments of code where a variable is present. It is used to describe the data

dependency relation between variables.

Furthermore, since DFGs are only capable of representing basic blocks without

branches (blocks without any conditions in other words), they can be replaced by the

basic blocks of a CFG resulting in a control/data flow graph. Utilizing the following

piece of code snippet in Python (Figure 2), we constructed the AST (Figure 3) as

well as CFG (Figure 4.a) and DFGs (Figure 4.b and (Figure 4.c) to illustrate their

definitions.

def subt rac t (a , b) :

x = 0

i f (a > b) :

x = a − b

else :

x = a + b

return x

r e s u l t = subt rac t (2 , 1)

print (r e s u l t)

Fig. 2: A Python code snippet example.

3. Representation Learning Models for Programming Languages

Table 1 presents a list of the newest and most influential pre-trained models in the

PL domain reviewed by this paper. The list of models was selected by accounting for

the date of publication (recent is preferred), the number of citations (can be found

in Figure 5), and the venue in which they were published. Some of the state-of-the-

art models that were published most recently have amassed few citations, which

is expected. We present the NL model that served as inspiration, the architecture

(i.e., encoder-only, decoder-only, and encoder-decoder), the pre-training tasks or

objective functions used to train the model, the parameter size of the model, the

corpus used to train, and the programming languages that the model has seen

during training.

An encoder-only model encodes an input sequence, in our case, a set of code

tokens, into internal state vectors, which can be used for program classification or

regression tasks. Whereas a decoder-only model predicts the next tokens given

some previous tokens as context which is mainly used for code completion tasks or

November 13, 2024 15:24 output

5

0 Module: NULL

30 Assign: NULL 36 Expr: NULL

1 FunctionDef: subtract

31 NameStore: result 32 Call: NULL

7 body: NULL 29 detector_list: NULL2 arguments: NULL

37 Call: NULL

38 NameLoad: print 39 NameLoad: result34 Num: 233 NameLoad: subtract 35 Num: 1

6 defaults: NULL3 args: NULL

4 arg: NULL 5 arg: NULL

11 If: NULL 27 Return: NULL8 Assign: NULL

9 NameStore: x 10 Num: 0

15 body: NULL12 CompareGt: NULL 21 orelse: NULL

13 NameLoad: a 14 NameLoad: b 16 Assign: NULL
22 Assign: NULL

17 NameStore: x 18 BinOpSub: NULL

19 NameLoad: a 20 NameLoad: b

23 NameStore: x 24 BinOpAdd: NULL

25 NameLoad: a 26 NameLoad: b

28 NameLoad: x

Fig. 3: An example of Abstract Syntax Tree.

code generation tasks. Finally, an encoder-decoder model will encode an input

sequence and then generate a new output sequence not necessarily as a contin-

uation of the input sequence, but as an original token sequence such as in code

summarization or code translation tasks.

We mainly focus on deep-learning models developed for code-understanding

tasks. Some models have been developed with networks such as Recurrent Neu-

ral Networks (RNNs)34, more specifically, Long Short-Term Memory (LSTM)35,

bidirectional LSTMs (BiLSTMs), or Graph Neural Networks (GNNs). Bidirectional

LSTMs allow the input to flow in both directions through the neural network. GNNs

can receive graph representation inputs such as ASTs, CFGs, or DFGs and learn

directly from the graphs instead of learning from a sequence representation of the

graphs.

November 13, 2024 15:24 output

6

3.1. Transformer Models

Most recent state-of-the-art models in the field are Transformer36 based models

constructed using the attention mechanism connecting the encoder to the decoder

and assigning attention weights, which inform the model about the input tokens that

are more influential. The encoder associates the input tokens with each other while

learning their representation through a self-attention mechanism. This self-attention

0: start

9: result = subtract(2,1)

2: x = 0

1: enter: subtract(2,1)

3: if (a>b)

6: x = a+b4: x = a-b

7: return x

1: exit: subtract(2,1)

10: print(result)

0: stop

(a)

a b

x

-

(b)

a b

x

+

(c)

Fig. 4: An example of Flow Graphs. (a) Control Flow Graph, (b) Data Flow Graph

of expression x = a - b (c) Data Flow Graph of expression x = a + b

November 13, 2024 15:24 output

7

0 100 200 300 400 500 600 700

CodeBERT

GraphCodeBERT

CodeT5

PLBART

Codex

CodeTrans

CodeGPT

SynCoBERT

UniXcoder

TreeBERT

ContraCode

CuBERT

Code-MVP

CoTexT

Code2vec

Code2seq

2020

2021

2021

2021

2021

2021

2021

2021

2022

2021

2021

2020

2022

2021

2019

2018

Number of citations

Fig. 5: Number of citations (by July 2022) for models.

mechanism is also used by the decoder when receiving the encoder’s output. These

models in the PL field were mostly built upon current well-performing transformer-

based models in the NL field such as BERT1, BART2, GPT5, and T54.

3.1.1. CodeBERT

CodeBERT25 is a pre-trained programming language model utilizing an encoder-

only architecture identical to that of the RoBERTa3 model in the natural language

field. CodeBERT is the first NL-PL large language model pre-trained on multiple

programming languages. The RoBERTa model builds on top of the BERT1 model

with an optimized training procedure and uses more data to train the model even

further to achieve better results on downstream tasks. The CodeBERT model was

pre-trained using the Masked-Language Modeling (MLM) objective, which consists

of predicting randomly masked code tokens, as well as the Replaced Token Detection

(RTD) objective, which consists of predicting whether a token at a specific location

appears in the original program or it has been replaced. Both of these objective

tasks were originally developed for natural language models and then adapted to

programming language models. The adaptations mainly involve addressing both

bimodal (the input is NL and PL pairs) and unimodal (the input is PL) types of

November 13, 2024 15:24 output

8

Name NL Derivative Architecture Pre-training

Tasks

Parameter Size Corpus Programming

Languages

CodeBERT (Feng

et al., 2020)

BERT Encoder-only MLM, RTD 125M CodeSearchNet Go, Java,

JavaScript, PHP,

Python, Ruby

GraphCodeBERT

(Guo et al., 2021)

BERT Encoder-only MLM, EP, NA 125M CodeSearchNet Go, Java,

JavaScript, PHP,

Python, Ruby

CodeT5 (Wang

et al., 2021)

T5 Encoder-Decoder MSP, IT, MIP,

BDG

60M, 220M (small,

base)

CodeSearchNet,

BigQuery’s GitHub

Dataset

Go, Java,

JavaScript, PHP,

Python, Ruby, C,

C#

PLBART (Ahmad

et al., 2021)

BART Encoder-Decoder DA 140M BigQuery’s GitHub

Dataset, Stack-

Overflow (Septem-

ber 2020)

Java, Python, (Go,

JavaScript, PHP,

Ruby, C, C++,

C#)*

Codex (Chen et al.,

2021)

GPT Decoder-only Minimizing neg-

ative log-likelihood

between reference

code and generated

code

12M, 25M, 42M,

85M, 300M, 679M,

2.5B, 12B

GitHub (May 2020) Python

CodeTrans (Elnag-

gar et al., 2021)

T5 Encoder-Decoder Span Masking 60M, 220M, 770M

(small, base, large)

CodeSearchNet,

The Public

Git Archive, 150k

Python Dataset,

StaQC, LISP

Go, Java,

JavaScript, PHP,

Python, Ruby,

SQL, LISP, C#

CodeGPT (Lu

et al., 2021)

GPT Decoder-only Next token predic-

tion

124M CodeSearchNet Java, Python

SynCoBERT

(Wang et al., 2021)

BERT Encoder-only MMLM, IP, TEP,

MCL

125M CodeSearchNet Go, Java,

JavaScript, PHP,

Python, Ruby

UniXcoder (Guo

et al., 2022)

- Encoder-

only, Decoder-only,

Encoder-Decoder

MLM, ULM, DNS,

MCL, CMG

125M CodeSearchNet, C4 Go, Java,

JavaScript, PHP,

Python, Ruby

TreeBERT (Jiang

et al., 2021)

BERT Encoder-Decoder TMLM, NOP - Python and Java

corpus published by

CuBERT

Java, Python

ContraCode (Jain

et al., 2021)

- Encoder-Decoder InfoNCE 18M, 23M (LSTM,

Transformer)

CodeSearchNet JavaScript

CuBERT (Kanade

et al., 2020)

BERT Encoder-only MLM, NSP 340M BigQuery’s GitHub

Dataset

Python

Code-MVP (Wang

et al., 2022)

- Encoder-only MMLM, MVCL,

FGTI

125M CodeSearchNet Python

CoTexT (Phan

et al., 2021)

T5 Encoder-Decoder Self-

supervised masked

span prediction

220M CodeSearchNet,

BigQuery’s GitHub

Dataset

Go, Java,

JavaScript, PHP,

Python, Ruby

Code2vec (Alon

et al., 2019)

Doc2vec Encoder-only Predicting a prob-

ability distribution

of assigned tags to

code snippets

- GitHub Dataset Java

Code2seq (Alon

et al., 2018)

Seq2seq Encoder-Decoder Next token predic-

tion

37M Java-Small, Java-

Med, Java-Large,

C# Dataset

Java, C#

Table 1: Representation Learning Models for Programming Languages. * refers to

not explicitly trained with the language but used for evaluation.

data. The model has a total of 125M trained parameters and it was trained on the

CodeSearchNet37 dataset with the six available programming languages including

Go, Java, JavaScript, PHP, Python, Ruby.

3.1.2. GraphCodeBERT

GraphCodeBERT15 introduces data flow into the architecture with a graph-guided

masked attention function. GraphCodeBERT improves on CodeBERT in program-

ming language understanding and code representation by leveraging the code’s

structure with Data Flow Graphs (DFGs). The code’s structure is incorporated

November 13, 2024 15:24 output

9

into the model using a graph-guided masked attention function. In addition to the

MLM objective, it introduces two new objectives for pre-training in a structure-

aware manner. The first one consists of predicting data flow edges between variable

nodes which they refer to as Edge Prediction (EP), and the second involves pre-

dicting edges between variable nodes and source code tokens, which is referred to

as Node Alignment (NA). This encoder-only model follows the BERT architecture

using a multi-layer bidirectional Transformer design. They also utilize code com-

ments in their pre-training data, which most pre-trained models omit as it can be

misleading and does not affect the execution of the program. This model contains

125M trainable parameters and was trained on the CodeSearchNet dataset using

the six given programming languages.

3.1.3. CodeT5

CodeT526 is an encoder-decoder pre-trained model, which is able to perform both

code understanding tasks and code generation tasks. This work improves on the

predecessor methods by introducing an encoder-decoder pre-training that is more

optimal for generation tasks and takes into account specific characteristics and

syntax of programming languages. The architecture of this model is based on the

T54 NLP model. They introduce new pre-training tasks including Masked Span

Prediction (MSP), which masks arbitrary length spans of text and then attempts to

predict them. They also make use of the Identifier Tagging (IT) task, where the goal

is to predict if a certain code token is an identifier. Furthermore, using the Masked

Identifier Prediction (MIP) task, the model learns to predict the missing identifier

code tokens from the masked source code. Finally, they employ the Bimodal Dual

Generation (BDG) task, which consists of generating NL or PL from an NL-PL pair.

This can also be viewed as an MSP task, where the NL or the PL is masked in one

single span and the goal is to predict the span. The CodeT5 model was built with

two sizes: a small version consisting of 60M parameters and a base version consisting

of 220M parameters. It was pre-trained on two datasets: CodeSearchNet and the

GitHub fraction of Google BigQuery dataset a. In addition to the six programming

languages presented in the CodeSearchNet dataset, the model is also trained on C

and C# programming languages.

3.1.4. PLBART

PLBART27 is another encoder-decoder pre-trained model originating from the

BART2 model’s architecture well established in the NLP field. PLBART develops

a general-purpose model focused on tackling program and language understanding

and generation tasks. This model is pre-trained with a single objective named De-

noising Autoencoding (DA). The objective consists of reconstructing an input text

ahttps://console.cloud.google.com/marketplace/details/github/github-repos

November 13, 2024 15:24 output

10

affected by a noise function. The input is modified with noise by masking certain

tokens (similar to MLM), by deleting certain tokens, or by masking out spans of to-

kens (similar to MSP). The PLBART model has 140M parameters and was trained

on the Java and Python written GitHub fraction of the Google BigQuery dataset

and they used data from StackOverflow to extract NL questions and answers to

programming problems. They also evaluated their model on seven additional pro-

gramming languages (i.e., Go, JavaScript, PHP, Ruby, C, C++, C#), which were

not presented to the model during its pre-training phase. The PLBART model

performed surprisingly well, even outperforming other models that were explicitly

pre-trained on those languages on several tasks.

3.1.5. Codex

Codex28 introduces a decoder-only model that generates code solutions based on a

given natural language problem denoted as the context. Codex establishes a GPT

style model trained solely on programming language data. This model’s architecture

was inspired by the GPT-338 model family and showed performance improvements

on code-related tasks over GPT models, which were partially trained on code. They

train this model with the objective of minimizing the negative log-likelihood between

the reference code and the generated code. They publish this model in multiple sizes

ranging from 12M to 12B parameters. The model is trained on a large dataset (179

GB) of repositories from GitHub using only the Python programming language.

This model proves capable of generating solutions to a wide variety of introductory

difficulty problems, however, it falls short when tasked with harder problems. It is

presumed that the Codex model under-performs a strong student having completed

an introductory computer science course.

3.1.6. CodeTrans

CodeTrans29 is an encoder-decoder transformer pre-trained model which follows

the T54 framework. This work proposes a model focused on tackling six software

engineering tasks featuring numerous programming languages. To pre-train their

model, they used span masking (similar to MSP) where the spans were composed

of three tokens. They release three sizes of their model including a base (220M

parameters), a small (60M parameters), and a large (770M parameters) model.

The model was trained on a multitude of datasets including CodeSearchNet, the

Public Git Archive, the 150k Python dataset, StaQC, and LISP. Hence, it was

trained on the six CodeSearchNet programming languages as well as SQL, LISP, and

C#. CodeTrans was assessed on Single-Task Learning, Multi-Task Learning, and

Transfer Learning where they pre-trained their model in a self-supervised manner

before fine-tuning it on downstream tasks. They achieved mixed results between

their model learning variations over different tasks.

November 13, 2024 15:24 output

11

3.1.7. UniXcoder

UniXcoder17 proposes an encoder-only, a decoder-only, and an encoder-decoder

framework for a range of applicable tasks. They take advantage of code comments

and abstract syntax trees (ASTs) to enrich their model input. While code comments

could be helpful to translate the code’s purpose, abstract syntax trees provide the

structure of the code, which they then encode into a sequence structure via a one-to-

one mapping. They utilize multiple pre-training tasks including Masked Language

Modeling (MLM) in the encoder-only mode, where the task is to predict the masked

tokens, Unidirectional Language Modeling (ULM) for the decoder-only mode, where

the task consists of predicting the next token conditioned on previous tokens. They

further employ a DeNoiSing (DNS) objective in an encoder-decoder mode, which

consists of predicting random masked spans (similar to MSP). The model also learns

semantic embeddings from multi-modal code using Multi-modal Contrastive Learn-

ing (MCL), and Cross-Modal Generation (CMG). The former employs a contrastive

learning approach based on SimCSE39 framework and the latter consists of generat-

ing code comments. They also mention that while AST representations were crucial

in pre-training the model, they are not required when fine-tuning the model to spe-

cific downstream tasks. The model includes 125M trainable parameters and follows

a transformer-based model architecture. The different behavior modes (encoder-

only, decoder-only, encoder-decoder) of the model are enabled using an input prefix

([Enc], [Dec], [E2D]). The UniXcoder model was trained on the CodeSearchNet

dataset and on the C4 dataset40 with the six programming languages available in

the datasets (i.e., Go, Java, JavaScript, PHP, Python, Ruby).

3.1.8. TreeBERT

TreeBERT18 provides a tree-based architectural pre-trained encoder-decoder

model. They develop a model that incorporates tree structure from abstract syntax

trees (ASTs) to improve programming language-oriented generation tasks, outper-

forming other models in code summarization and code documentation while demon-

strating good transferability to unseen programming languages. They pre-train us-

ing Tree Masked Language Modeling (TMLM), where they mask the nodes/tokens

from the tree/code in a novel way that ensures a diversity in the types of nodes

masked as opposed to a standard MLM strategy. The model is also trained using

Node Order Prediction (NOP) to learn the syntactical structure of code, where the

task consists of exchanging the positions of nodes along paths in the tree and mak-

ing the model predict whether the nodes are in order or out of order. They employ

the Python and Java dataset that was used in training of the CuBERT32 model to

also train the TreeBERT model.

November 13, 2024 15:24 output

12

3.1.9. ContraCode

ContraCode31 provides an encoder-decoder pre-trained model along with a con-

trastive pre-training task, which helps the model learn the code functionality in

order to be able to recognize two syntactically different programs with similar ob-

jectives/purposes. They enhance the capture of program functionality in source

code and improve accuracy in natural code tasks such as code summarization and

TypeScript type inference. They use InfoNCE as the pre-training objective, which

classifies positive pairs over negative pairs in a contrastive learning setting. They uti-

lize their framework to train an LSTM35 model (specifically a Bidirectional LSTM),

which uses 18M parameters as well as a Transformer model, which uses 23M pa-

rameters. This model is trained on the CodeSearchNet dataset with simply the

JavaScript language.

3.1.10. CuBERT

CuBERT32 proposes an encoder-only pre-trained model developed from BERT1.

This work fills the gap in high-quality contextual embeddings for source code and

evaluation on program-understanding tasks. The model was trained using similar

tasks used to train the BERT model, however, slightly modified to source code.

They use the Masked Language Model (MLM) task to predict masked tokens and

the Next-Sentence Prediction (NSP) task to predict whether two logical code lines

separated by a separator token ([SEP]) follow each other. They trained the model

using 340M parameters on the Github portion of Google’s BigQuery dataset on

solely Python written programs. Unlike most pre-trained models, this model was

provided with Python tokenized code with the help of the Python tokenizer library

(tokenize).

3.1.11. Code-MVP

Code-MVP19 presents an encoder-only pre-trained model, which integrates mul-

tiple representations of a program in the model input at the same time with a

contrastive learning framework. The motivation of this work is to overcome the

limitations of existing code representation learning approaches, achieving superior

performance in various code-related tasks compared to state-of-the-art baselines.

They extract the natural language (NL) description/comment, the programming

language (PL) source code, the abstract syntax tree (AST) representation, the con-

trol flow graph (CFG) representation, and the program transformation (PT) variant

from a program and use those views as the input to the model. They utilize various

functionally-invariant PT techniques to help the model understand functional se-

mantics and also serve as a data augmentation. The model is trained on Multi-View

Masked Language Modeling (MMLM), which predicts masked-out tokens from data

points. The model is also trained on Multi-View Contrastive Learning (MVCL),

which functions differently depending on a single-view or a dual-view approach.

November 13, 2024 15:24 output

13

In both cases, they perform contrastive learning which requires positive and nega-

tive samples. In a single-view approach, positive samples consist of paired identical

programs with different views and negative samples consist of different programs

with different views. In the dual-view scenario, the setup is similar, however, they

prepend the program pairs with their corresponding NL representation. Finally, the

model is trained using the Fine-Grained Type Inference (FGTI) task, which con-

sists of predicting the type information of code tokens. They use a model containing

125M trainable parameters and they train on the CodeSearchNet dataset solely on

Python code.

3.1.12. CodeGPT

CodeGPT30 follows identical architecture and objective function as GPT-241 and

presents a decoder-only pre-trained model with 124M trained parameters. This work

provides a platform for evaluating and comparing methods in various programming

language tasks. CodeGPT was trained on the CodeSearchNet dataset with the

languages Java and Python separately on two different models. The model was

trained with the objective of predicting the next token based on a given context.

Two extra model variants exist for each programming language. One is trained from

scratch with random model weights and a new vocabulary. The other is trained from

the GPT-2 weights and vocabulary as starting points.

3.1.13. SynCoBERT

SynCoBERT16 provides a pre-trained encoder-only model derived from BERT.

They enhance code representation learning by exploring the properties of program-

ming languages, introducing novel pre-training objectives, and leveraging multi-

modal contrastive learning for improved code intelligence tasks. The parameters

and initializations are adopted from CodeBERT and GraphCodeBERT. The pre-

training dataset and learned programming languages are also identical to that of

CodeBERT. SynCoBERT, however, introduces a contrastive pre-training approach,

coupled with AST representations, and two novel pre-training tasks. First, the

model is trained on Multi-Modal Masked Language Modeling (MMLM), similar to

Code-MVP, although, in this case, the modalities used are NL, PL, and AST. They

form triplets from these modalities for each data point and predict masked tokens

from the data sequences. They further pre-train using the novel Identifier Predic-

tion (IP) task, which consists of predicting whether tokens are identifiers or not

as a binary classification task. Furthermore, they use AST Edge Prediction (TEP)

to encode structural information directly from AST into the model by predicting

masked edges between tree nodes. The main goal is to predict whether two nodes

have an edge between them or not. Finally, they employ Multi-Modal Contrastive

Learning (MCL), similar to Code-MVP, they create positive and negative samples

by pairing different combinations of NL, PL, and AST and train to maximize the

similarity for positive pairs while minimizing it for negative pairs.

November 13, 2024 15:24 output

14

3.1.14. CoTexT

CoTexT33 offers an encoder-decoder pre-trained model that is trained to learn the

representation between NL and PL. They develop a model that understands the

relationship between natural language and programming language, enabling it to

excel in various NL-PL tasks and achieve state-of-the-art results. This model is

trained using a self-supervised method on both unimodal and bimodal data. They

pre-trained the model by masking spans of tokens in the input sequence and us-

ing the concatenation of sentinel tokens and ground-truth masked tokens as the

target sequence. The CodeSearchNet dataset and the GitHub portion of Google’s

BigQuery dataset were used to train the model on the programming languages: Go,

Java, JavaScript, PHP, Python, and Ruby. The model is initialized with the T54

model and has a total of 220M trained parameters.

3.2. Other Non-Transformer Models

Some influential models have been proposed which do not rely on a Transformer36

architecture, however, they do utilize the attention mechanism. Although they are

not large models, they introduce important and successful code representation mod-

els.

3.2.1. Code2vec

Code2vec21 provides an encoder-only trained model, which is designed to aggregate

syntactic paths from the AST representation of source code into a single vector.

The model architecture is a path-based attention model, which is trained with the

objective of predicting a probability distribution of assigned tags to code snippets.

The model is inspired by the NL model Doc2vec8. Code2vec was trained on a

GitHub dataset containing 14M Java methods.

3.2.2. Code2seq

Code2seq20 presents an encoder-decoder model, which is designed to convert source

code snippets to natural language sequences. It was inspired by the Seq2seq42 NL

model. Similar to Code2vec, source code snippets are represented as compositional

paths in their AST representation. The encoder takes in a vector representation of

each path in the AST rather than code tokens. Code2seq was trained to predict the

next token based on previously generated tokens as context. The model architec-

ture encapsulates a combination of bidirectional LSTMs coupled with an attention

mechanism in the decoder. The model was trained on Java (Java-Small, Java-Med,

Java-Large) and C# datasets from GitHub and has a total of 37M trainable pa-

rameters.

November 13, 2024 15:24 output

15

3.3. Available Code

We present the GitHub links to the publicly available code and their availabil-

ity on HuggingFace for the described models in Table 2. GitHub repositories host

code for pre-training and/or fine-tuning the models on specific tasks and datasets.

HuggingFace provides the pre-trained models’ architecture and trained parameters,

which can be simply downloaded and freely used through the HuggingFace API for

fine-tuning for any task or dataset.

4. Datasets

We selected the most influential datasets in the PL domain to train and evaluate

programming language models. Table 3 consists of programming languages, links,

and downstream applications for each dataset.

4.1. CodeXGLUE

CodeXGLUE30 is a collection of 14 datasets curated and filtered following proposed

methodologies such as in Wang et al. 60 . The dataset collection contains a total

of 10 different downstream tasks and it can be accessed at https://github.com/

microsoft/CodeXGLUE. We omit CodeXGLUE from Table 3 and instead, we include

the relevant datasets from the collection independently.

4.2. CodeSearchNet

CodeSearchNet37 is a large collection of datasets that was generated to explore the

problem of semantic code search. Given a natural language query, semantic code

search refers to the task of retrieving the relevant code. This task requires close

connection and cooperation between the language used in code (PL) and natural

language, which is used for describing concepts. This dataset contains 2 million

(comment, code) pairs extracted from open-source libraries. A comment can be

either a NL comment or a top-level function and code is an entire function or

method.

4.3. CoDesc

CoDesc43 is a large parallel dataset containing 4.2 million pairs of Java source code

and corresponding natural language descriptions with removed noise. This dataset is

generated from other similar but noisy datasets such as CodeSearchNet37, FunCom,

DeepCom58, and CONCODE55. The authors provided the noise removal source

code, which they used as a pre-processing step, along with the dataset.

4.4. APPS

Automated Programming Progress Standard (APPS)44 is a dataset curated for

code generation. Despite previously proposed benchmarks for code generation with

https://github.com/microsoft/CodeXGLUE
https://github.com/microsoft/CodeXGLUE

November 13, 2024 15:24 output

16

Model GitHub Link HuggingFace Link

CodeBERT https://github.com/microsoft/CodeBERT https:

//huggingface.co/microsoft/codebert-base

https://huggingface.co/microsoft/

codebert-base-mlm

GraphCodeBERT https://github.com/microsoft/CodeBERT https://huggingface.co/microsoft/

graphcodebert-base

CodeT5 https://github.com/salesforce/CodeT5 https:

//huggingface.co/Salesforce/codet5-base

https:

//huggingface.co/Salesforce/codet5-small

https:

//huggingface.co/Salesforce/codet5-large

https://huggingface.co/Salesforce/

codet5-base-multi-sum

https://huggingface.co/Salesforce/

codet5-large-ntp-py

PLBART https://github.com/wasiahmad/PLBART https://huggingface.co/uclanlp/plbart-base

https://huggingface.co/uclanlp/plbart-large

https:

//huggingface.co/uclanlp/plbart-java-cs

https://huggingface.co/uclanlp/

plbart-python-en_XX

https://huggingface.co/uclanlp/plbart-csnet

https://huggingface.co/uclanlp/

plbart-multi_task-python

https://huggingface.co/uclanlp/

plbart-java-clone-detection

Codex N/A N/A

CodeTrans https://github.com/agemagician/CodeTrans https:

//huggingface.co/SEBIS/code_trans_t5_small_

program_synthese_transfer_learning_finetune

https://huggingface.co/SEBIS/code_trans_t5_

base_code_documentation_generation_python

https://huggingface.co/SEBIS/code_trans_t5_

small_code_documentation_generation_python

https://huggingface.co/SEBIS/code_trans_t5_

large_code_comment_generation_java_

transfer_learning_finetune

https://huggingface.co/SEBIS/code_trans_t5_

large_source_code_summarization_python_

multitask_finetune

UniXcoder https://github.com/microsoft/CodeBERT https://huggingface.co/microsoft/

unixcoder-base-nine

https:

//huggingface.co/microsoft/unixcoder-base

https://huggingface.co/microsoft/

unixcoder-base-unimodal

TreeBERT https://github.com/17385/TreeBERT N/A

ContraCode https://github.com/parasj/contracode N/A

CuBERT https://github.com/zhihu/cuBERT https://huggingface.co/zluvolyote/CUBERT

Code-MVP N/A N/A

CodeGPT N/A https://huggingface.co/microsoft/

CodeGPT-small-py-adaptedGPT2

https://huggingface.co/microsoft/

CodeGPT-small-java-adaptedGPT2

https:

//huggingface.co/microsoft/CodeGPT-small-py

https://huggingface.co/microsoft/

CodeGPT-small-java

SynCoBERT N/A N/A

CoTexT https://github.com/justinphan3110/CoTexT https://huggingface.co/razent/cotext-1-ccg

https://huggingface.co/razent/cotext-1-cc

https://huggingface.co/razent/cotext-2-cc

Code2vec https://github.com/tech-srl/code2vec N/A

Code2seq https://github.com/tech-srl/code2seq N/A

Table 2: Available code and pre-trained model parameters.

https://github.com/microsoft/CodeBERT
https://huggingface.co/microsoft/codebert-base
https://huggingface.co/microsoft/codebert-base
https://huggingface.co/microsoft/codebert-base-mlm
https://huggingface.co/microsoft/codebert-base-mlm
https://github.com/microsoft/CodeBERT
https://huggingface.co/microsoft/graphcodebert-base
https://huggingface.co/microsoft/graphcodebert-base
https://github.com/salesforce/CodeT5
https://huggingface.co/Salesforce/codet5-base
https://huggingface.co/Salesforce/codet5-base
https://huggingface.co/Salesforce/codet5-small
https://huggingface.co/Salesforce/codet5-small
https://huggingface.co/Salesforce/codet5-large
https://huggingface.co/Salesforce/codet5-large
https://huggingface.co/Salesforce/codet5-base-multi-sum
https://huggingface.co/Salesforce/codet5-base-multi-sum
https://huggingface.co/Salesforce/codet5-large-ntp-py
https://huggingface.co/Salesforce/codet5-large-ntp-py
https://github.com/wasiahmad/PLBART
https://huggingface.co/uclanlp/plbart-base
https://huggingface.co/uclanlp/plbart-large
https://huggingface.co/uclanlp/plbart-java-cs
https://huggingface.co/uclanlp/plbart-java-cs
https://huggingface.co/uclanlp/plbart-python-en_XX
https://huggingface.co/uclanlp/plbart-python-en_XX
https://huggingface.co/uclanlp/plbart-csnet
https://huggingface.co/uclanlp/plbart-multi_task-python
https://huggingface.co/uclanlp/plbart-multi_task-python
https://huggingface.co/uclanlp/plbart-java-clone-detection
https://huggingface.co/uclanlp/plbart-java-clone-detection
https://github.com/agemagician/CodeTrans
https://huggingface.co/SEBIS/code_trans_t5_small_program_synthese_transfer_learning_finetune
https://huggingface.co/SEBIS/code_trans_t5_small_program_synthese_transfer_learning_finetune
https://huggingface.co/SEBIS/code_trans_t5_small_program_synthese_transfer_learning_finetune
https://huggingface.co/SEBIS/code_trans_t5_base_code_documentation_generation_python
https://huggingface.co/SEBIS/code_trans_t5_base_code_documentation_generation_python
https://huggingface.co/SEBIS/code_trans_t5_small_code_documentation_generation_python
https://huggingface.co/SEBIS/code_trans_t5_small_code_documentation_generation_python
https://huggingface.co/SEBIS/code_trans_t5_large_code_comment_generation_java_transfer_learning_finetune
https://huggingface.co/SEBIS/code_trans_t5_large_code_comment_generation_java_transfer_learning_finetune
https://huggingface.co/SEBIS/code_trans_t5_large_code_comment_generation_java_transfer_learning_finetune
https://huggingface.co/SEBIS/code_trans_t5_large_source_code_summarization_python_multitask_finetune
https://huggingface.co/SEBIS/code_trans_t5_large_source_code_summarization_python_multitask_finetune
https://huggingface.co/SEBIS/code_trans_t5_large_source_code_summarization_python_multitask_finetune
https://github.com/microsoft/CodeBERT
https://huggingface.co/microsoft/unixcoder-base-nine
https://huggingface.co/microsoft/unixcoder-base-nine
https://huggingface.co/microsoft/unixcoder-base
https://huggingface.co/microsoft/unixcoder-base
https://huggingface.co/microsoft/unixcoder-base-unimodal
https://huggingface.co/microsoft/unixcoder-base-unimodal
https://github.com/17385/TreeBERT
https://github.com/parasj/contracode
https://github.com/zhihu/cuBERT
https://huggingface.co/zluvolyote/CUBERT
https://huggingface.co/microsoft/CodeGPT-small-py-adaptedGPT2
https://huggingface.co/microsoft/CodeGPT-small-py-adaptedGPT2
https://huggingface.co/microsoft/CodeGPT-small-java-adaptedGPT2
https://huggingface.co/microsoft/CodeGPT-small-java-adaptedGPT2
https://huggingface.co/microsoft/CodeGPT-small-py
https://huggingface.co/microsoft/CodeGPT-small-py
https://huggingface.co/microsoft/CodeGPT-small-java
https://huggingface.co/microsoft/CodeGPT-small-java
https://github.com/justinphan3110/CoTexT
https://huggingface.co/razent/cotext-1-ccg
https://huggingface.co/razent/cotext-1-cc
https://huggingface.co/razent/cotext-2-cc
https://github.com/tech-srl/code2vec
https://github.com/tech-srl/code2seq

November 13, 2024 15:24 output

17

Dataset Programming

Languages

Link Downstream Applications

CodeSearchNet* (Husain

et al., 2019)

Go, Java,

JavaScript, PHP,

Python, Ruby

https://github.com/github/

CodeSearchNet

Code Search25, Code

Summarization25–27,29,30,33

CoDesc (Hasan et al.,

2021)

Java https:

//github.com/csebuetnlp/CoDesc

Code Search, Code Summarization

APPS (Hendrycks et al.,

2021)

Python https:

//github.com/hendrycks/apps

Code Generation28

HumanEval (Chen et al.,

2021)

Python https:

//github.com/openai/human-eval

Code Generation28

BigCloneBench*

(Svajlenko et al., 2014)

Java https://github.com/clonebench/

BigCloneBench

Clone Detection15–17,30

POJ-104* (Mou et al.,

2016)

C, C++ https://github.com/microsoft/

CodeXGLUE/tree/main/Code-Code/

Clone-detection-POJ-104

Clone Detection16,17,30

Devign* (Zhou et al.,

2019)

C https:

//sites.google.com/view/devign

Defect Detection16,26,27,30,33

GraphCodeBERT’s Code

Search Dataset (CSN17,

CodeSearch16) (Guo

et al., 2021)

Go, Java,

JavaScript, PHP,

Python, Ruby

https://github.com/microsoft/

CodeBERT/tree/master/

GraphCodeBERT/codesearch

Code Search15–17

AdvTest* (Lu et al., 2021) Python https://github.com/microsoft/

CodeXGLUE/tree/main/Text-Code/

NL-code-search-Adv

Code Search16,17,30

CosQA* (Huang et al.,

2021)

Python https://github.com/microsoft/

CodeXGLUE/tree/main/Text-Code/

NL-code-search-WebQuery

Code Search17,30

CoNaLa (Yin et al., 2018) Python https://conala-corpus.github.io Code Search19

PY150* (Raychev et al.,

2016)

Python https:

//www.sri.inf.ethz.ch/py150

Code Completion17,30, Method Name

Generation18

GREAT (Hellendoorn

et al., 2020)

Python https://github.com/

google-research-datasets/great

Defect Detection19

Github Java Corpus* (Al-

lamanis and Sutton, 2013)

Java https://groups.inf.ed.ac.uk/cup/

javaGithub/

Code Completion17,30

Java Datasets (Java-

small, Java-med and Java-

large) (Allamanis et al.,

2016)

Java https://groups.inf.ed.ac.uk/cup/

codeattention/

Method Name Generation18,20

Bugs2Fix* (Tufano et al.,

2019)

Java https://github.com/microsoft/

CodeXGLUE/tree/main/Code-Code/

code-refinement

Code Repair15,26,27,30,33

CONCODE* (Iyer et al.,

2018)

Java https:

//github.com/sriniiyer/concode

Code Generation17,26,27,30,33

AlgoLisp (Polosukhin and

Skidanov, 2018)

LISP-inspired DSL https://github.com/nearai/

program_synthesis/tree/master/

program_synthesis/algolisp

Code Generation29

CodeTrans* (Lu et al.,

2021) and (Guo et al.,

2021)

Java-C# https://github.com/microsoft/

CodeXGLUE/tree/main/Code-Code/

code-to-code-trans

Code Translation15,16,26,27,30

CodeNet (Puri et al.,

2021)

55 languages; 95%

are in C++, C, C#,

Python, Java, Ruby

https:

//github.com/IBM/Project_CodeNet

Code-to-Code Search17,19, Clone De-

tection19

DeepCom’s Java Dataset

(Hu et al., 2018)

Java https:

//github.com/xing-hu/DeepCom

Code Summarization18,29

ContraCode’s JavaScript

Clone Detection Dataset

(Jain et al., 2021)

JavaScript https:

//github.com/parasj/contracode

Clone Detection31

ContraCode’s JavaScript

Summariza-

tion Dataset (Jain et al.,

2021)

JavaScript https:

//github.com/parasj/contracode

Method Name Generation31

CODE-NN Dataset (Iyer

et al., 2016)

Python, SQL, C# https:

//github.com/sriniiyer/codenn/

tree/master/data/stackoverflow

Code Summarization29

Table 3: Datasets used in PL. * refers to datasets included in the CodeXGLUE

collection.

https://github.com/github/CodeSearchNet
https://github.com/github/CodeSearchNet
https://github.com/csebuetnlp/CoDesc
https://github.com/csebuetnlp/CoDesc
https://github.com/hendrycks/apps
https://github.com/hendrycks/apps
https://github.com/openai/human-eval
https://github.com/openai/human-eval
https://github.com/clonebench/BigCloneBench
https://github.com/clonebench/BigCloneBench
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-POJ-104
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-POJ-104
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-POJ-104
https://sites.google.com/view/devign
https://sites.google.com/view/devign
https://github.com/microsoft/CodeBERT/tree/master/GraphCodeBERT/codesearch
https://github.com/microsoft/CodeBERT/tree/master/GraphCodeBERT/codesearch
https://github.com/microsoft/CodeBERT/tree/master/GraphCodeBERT/codesearch
https://github.com/microsoft/CodeXGLUE/tree/main/Text-Code/NL-code-search-Adv
https://github.com/microsoft/CodeXGLUE/tree/main/Text-Code/NL-code-search-Adv
https://github.com/microsoft/CodeXGLUE/tree/main/Text-Code/NL-code-search-Adv
https://github.com/microsoft/CodeXGLUE/tree/main/Text-Code/NL-code-search-WebQuery
https://github.com/microsoft/CodeXGLUE/tree/main/Text-Code/NL-code-search-WebQuery
https://github.com/microsoft/CodeXGLUE/tree/main/Text-Code/NL-code-search-WebQuery
https://conala-corpus.github.io
https://www.sri.inf.ethz.ch/py150
https://www.sri.inf.ethz.ch/py150
https://github.com/google-research-datasets/great
https://github.com/google-research-datasets/great
https://groups.inf.ed.ac.uk/cup/javaGithub/
https://groups.inf.ed.ac.uk/cup/javaGithub/
https://groups.inf.ed.ac.uk/cup/codeattention/
https://groups.inf.ed.ac.uk/cup/codeattention/
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-refinement
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-refinement
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-refinement
https://github.com/sriniiyer/concode
https://github.com/sriniiyer/concode
https://github.com/nearai/program_synthesis/tree/master/program_synthesis/algolisp
https://github.com/nearai/program_synthesis/tree/master/program_synthesis/algolisp
https://github.com/nearai/program_synthesis/tree/master/program_synthesis/algolisp
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans
https://github.com/IBM/Project_CodeNet
https://github.com/IBM/Project_CodeNet
https://github.com/xing-hu/DeepCom
https://github.com/xing-hu/DeepCom
https://github.com/parasj/contracode
https://github.com/parasj/contracode
https://github.com/parasj/contracode
https://github.com/parasj/contracode
https://github.com/sriniiyer/codenn/tree/master/data/stackoverflow
https://github.com/sriniiyer/codenn/tree/master/data/stackoverflow
https://github.com/sriniiyer/codenn/tree/master/data/stackoverflow

November 13, 2024 15:24 output

18

restricted settings, this benchmark evaluates the ability of the model to generate an

appropriate code given a natural language query. APPS consists of 10,000 coding

problems with different levels of difficulty.

4.5. HumanEval

HumanEval is an evaluation set released by Chen et al. 28 to calculate the functional

correctness of generated codes and evaluate the quality of their model. It consists

of 164 hand-written programming problems.

4.6. BigCloneBench

BigCloneBench45 is a clone detection benchmark. It consists of known true and

false positive clones extracted from the IJaDataset source repository, which is a Big

Data inter-project Java repository.

4.7. POJ-104

POJ-104, which comes from a programming open judge (OJ) system, was proposed

by Mou et al. 46 . The open judge system automatically judges the validity of codes

for specified problems by executing them. POJ-104 is a clone detection dataset

featured in the CodeXGLUE collection.

4.8. Devign

Devign47, or Defects4J16, is a defect detection dataset, which contains 27,318 func-

tions gathered from two common and diverse C open-source codes among the de-

velopers. These functions are labeled as either vulnerable or non-vulnerable.

4.9. CSN

CSN, proposed by Guo et al. 15 , is different from CodeSearchNet37 dataset setting

since the answer to a query is extracted from the entire development and testing

code corpus (instead of only retrieving the answer among 1000 candidate codes).

Furthermore, in order to improve the quality of the dataset they filtered out the

queries with unrelated content to the code.

4.10. AdvTest

AdvTest30 is a code search dataset in Python extracted from CodeSearchNet37.

This dataset is generated by filtering out all the samples in which the code can not

be parsed into an AST as well as all the samples in which the document has less

than 3 tokens or more than 256 tokens, contains special tokens, or is not in English.

November 13, 2024 15:24 output

19

4.11. CoSQA

CoSQA48 contains 20,604 pairs of code (in Python) and natural language web

queries for code search and code question answering. The instances in this dataset

are labeled as 1 or 0 based on whether the code can answer the given query or not.

4.12. CoNaLa

CoNaLa49 is the Code/Natural Language Challenge dataset, which contains pairs

of natural language intent and corresponding Python snippets. This dataset was

extracted from Stack Overflow and was used in the code search task.

4.13. PY150

PY15050 contains 150,000 Python source codes collected from GitHub and can be

useful for token-level code completion. Furthermore Jiang et al. 18 used this dataset

for method name generation.

4.14. GREAT

Graph Relational Embedding Attention Transformer51 proposed the GREAT model

as well as a dataset, which is a defect detection dataset. They used the PY150

corpus to extract top-level function definitions and randomly generate up to three

bugs per function. Each instance in the GREAT dataset consists of a generated

buggy function definition in Python paired with the original non-buggy code.

4.15. GitHub Java Corpus

GitHub Java Corpus52 is a Java code completion dataset, which contains thousands

of Java projects extracted from GitHub repositories and filtered based on GitHub’s

social fork system to reach a higher-than-average quality. However, considering only

open-source projects can limit the type and application of included domains.

4.16. Java Datasets

Java Datasets53 were gathered by cloning 11 widely-known open-source Java

projects from GitHub. Chosen projects are the most popular Java projects on

GitHub since they were selected based on the total z-scores of the number of watch-

ers and forks.

4.17. Bugs2Fix

Bugs2Fix54 is a Java code repair dataset, which contains two subsets (small and

medium) based on the function’s length. On the source side (pre-commit) it con-

tains Java buggy functions while on the target side (post-commit) it contains the

corresponding repaired ones.

November 13, 2024 15:24 output

20

4.18. CONCODE

CONCODE55 is a frequently-used Java code generation dataset, in which each

instance is a tuple consisting of NL description, code environment, and source code.

It consists of over 100,000 examples of Java classes collected from public GitHub

repositories.

4.19. AlgoLisp

AlgoLisp56 is a LISP-inspired dataset for code generation, which contains problem

descriptions in natural language as well as their corresponding implementations.

This dataset is designed to learn basic concepts and rules in the domain-specific

language (DSL). However, since the number of homework assignments used to gen-

erate this dataset is limited, models trained on AlgoLisp wouldn’t be capable of

generalizing to new types of algorithms.

4.20. CodeTrans

This Java to C# dataset was initially crawled from several open-source projects

by Nguyen et al.. Although they provided their methodology for the retrieval of

the data, they did not publish nor name the dataset. Afterward, Chen et al. used

the previous approach to crawl the data again, however, once again, the authors

did not publish nor name the dataset. More recently, Guo et al. followed the same

methods to retrieve the dataset from the same open-source projects and published

the dataset, however, it is only later named by Lu et al. as CodeTrans. The dataset

provides functionally equivalent code written both in Java and C#.

4.21. CodeNet

Project CodeNet57 is a large-scale, diverse, and high-quality curated dataset pro-

posed for AI-for-Code research, with approximately 14 million code samples written

in over 50 programming languages. This rich dataset can be potentially used for code

search and clone detection as well as code-to-code search. From this dataset, they

also create 4 benchmark datasets: C++1000, C++1400, Python800, and Java250.

4.22. DeepCom’s Java Dataset

Hu et al. 58 proposed a Java dataset used for generating code comments (code

summarization task). This dataset consists of 9,714 Java projects extracted from

GitHub.

4.23. ContraCode’s Datasets

Jain et al. 31 introduced a JavaScript clone detection dataset, as well as a type

inference TypeScript dataset and a JavaScript code summarization dataset. They

November 13, 2024 15:24 output

21

generated their clone detection dataset by extracting JavaScript programs from the

HackerRank interview preparation website. Their JavaScript code summarization

dataset is collected from the labeled methods in the CodeSearchNet37 dataset. We

decided to omit the type inference task benchmark due to a lack of results.

4.24. CODE-NN’s Dataset

Iyer et al. 63 proposed a code summarization dataset, which was collected from Stack

Overflow. This dataset consists of pairs of Python, SQL, and C# code snippets along

with their short NL descriptions.

5. Downstream Tasks

In this section, we will cover different PL downstream tasks and benchmarks. Dif-

ferent tasks use different metrics, thus, we will define the metrics accordingly.

5.1. Code Generation

Code Generation55 is the task of predicting a code snippet or program structure

through learning from multimodal data sources including codes in a different pro-

gramming language, incomplete codes, natural language descriptions, or expected

program outputs (see Figure 6). A code generation system can produce the program-

ming language code with or without a given natural language query, describing the

requirements, as an input64. Automatic code generation can promise to cut on the

program development costs of programming tools as well as improve the quality of

programs.

Metrics such as Exact Match, BLEU Score, and CodeBLEU are used to report

the performance of code generation models. In the following, we provide a short

description of each of them.

• Exact Match (EM): It measures how exactly the generated code matches

the ground truth.

• BiLingual Evaluation Understudy (BLEU)65: It is calculated by counting

the matching n-grams in the generated text and the reference regardless of

the word order. The BLEU score is originally designed to evaluate natural

language.

• CodeBLEU66: It utilizes the matching n-grams strategy that the BLEU

score is using while integrating code syntax through abstract syntax tree

and code semantics via data flow.

Table 4 compares the performance metrics of a few state-of-the-art models on the

code generation task. These evaluation metrics are reported from previous bench-

mark experiments by different models on the Concode55 dataset.

November 13, 2024 15:24 output

22

Fig. 6: An example of code generation.

Models
Concode

EM BLEU CodeBLEU

CodeGPT (-adapted) 20.10 32.79 35.98

PLBART 18.75 36.69 38.52

CodeT5 (-base) 22.30 40.73 43.20

UniXcoder 22.60 38.23 -

CoTexT (1-CC) 20.10 37.40 40.14

Table 4: Code Generation17,26,27,30,33

5.2. Code Summarization

Code Summarization59, also referred to as Code Documentation Generation25, is

a supervised task of generating a description of the functionality of a given input

code (see Figure 7). Summaries of the computation a source code is performing can

provide a clear understanding to a user, which is exceedingly helpful in applications

such as code search. The comprehension of code, which is necessary to generate

these sort of comments manually, can be extremely expensive and time-consuming.

Hence, automating the process of generating high-level code documentation in nat-

ural language can be beneficial.

Smoothed BLEU-4 Score can be used to evaluate the performance of models on

the code summarization task. Since BLEU Score calculates a geometric mean of n-

November 13, 2024 15:24 output

23

Fig. 7: An example of code summarization.

gram matches, it usually noticeably differs from a human judgment at the sentence

level. Thus, different smoothing techniques have been proposed for sentence-level

BLEU.

Table 5 compares the performance metrics of a few state-of-the-art models on

the code summarization task. These evaluation metrics are reported from previous

benchmark experiments by different models on the CodeSearchNet37 and Deep-

Com’s Java dataset58.

Models

CodeSearchNet DeepCom’s Java Dataset

smoothed BLEU-4 BLEU

Ruby JavaScript Go Python Java PHP Java

CodeBERT 12.16 14.90 18.07 19.06 17.65 25.16 -

CodeT5 (-base) 15.24 16.16 19.56 20.01 20.31 26.03 -

PLBART 14.11 15.56 18.91 19.30 18.45 23.58 -

CoTexT (1-CC) 14.02 14.96 18.86 19.73 19.06 24.58 -

CodeTrans (-TF-Base) 14.07 18.25 19.50 20.26 20.19 25.84 -

TreeBERT - - - - - - 20.49

CuBERT - - - - - - 17.41

Code2Seq - - - - - - 18.48

Table 5: Code Summarization18,25–27,29,30,33

5.3. Code Repair

Code Repair54, also called Code Refinement15, is the task of learning how to fix

common programming bugs (see Figure 8). Finding and fixing the bugs in a code

is one of the most difficult and costly tasks for software developers. Thus, code

refinement aims at automatically fixing the errors in a program with less effort and

cost.

BLEU, Accuracy, and CodeBLEU are the commonly-used metrics for evaluating

models on the code repair task.

November 13, 2024 15:24 output

24

Fig. 8: An example of code repair.

• Accuracy: It measures the number of correctly predicted examples out of

the total number of examples.

Table 6 compares the performance metrics of a few state-of-the-art models on the

code repair task. These evaluation metrics are reported from previous benchmark

experiments by different models on the Bugs2Fix54 Java dataset.

Models

Bugs2Fix (Java)

small medium

BLEU Accuracy CodeBLEU BLEU Accuracy CodeBLEU

CodeBERT 77.42 16.4 75.58 91.07 5.2 87.52

GraphCodeBERT 80.02 17.3 - 91.31 9.1 -

PLBART 77.02 19.21 - 88.50 8.98 -

CodeT5 (-base) 77.43 21.61 - 87.64 13.96 -

CoTexT (1-CC) 77.79 21.03 76.15 88.4 13.11 85.83

Table 6: Code Repair15,26,27,30,33

5.4. Code Search

The Code Search37 task is composed of two subtasks. One of them is finding the

most appropriate code snippet for a given natural language description from a list

of PL candidates (see Figure 9). The second subtask is analyzing the query-code

pairs to indicate if the code answered the given query appropriately or not. This

task requires bridging the gaps between the programming language and natural

language.

The metric used for evaluating this task is the Mean Reciprocal Rank.

November 13, 2024 15:24 output

25

Fig. 9: An example of code search.

• Mean Reciprocal Rank (MRR): It is a metric for evaluating any model that

generates an ordered list of possible answers (ordered by the probability of

correctness).

Table 7 compares the performance metrics of a few state-of-the-art models on the

code search task. These evaluation metrics are reported from previous benchmark

experiments by different models on the GraphCodeBERT’s Code Search Dataset15,

CosQA48, AdvTest37, and CoNala49 dataset.

Models
GraphCodeBERT’s Code Search Dataset CosQA AdvTest CoNaLa

Overall Python Python Python

CodeBERT 69.3 65.7 27.2 38.9

GraphCodeBERT 71.3 68.4 35.2 47.3

SynCoBERT 74.0 - 38.3 48.4

PLBART 68.5 65.0 34.7 45.5

CodeT5 (-base) 71.5 67.8 39.3 47.7

UniXcoder 74.4 70.1 41.3 -

Code-MVP - 72.1 40.4 50.6

Table 7: Code Search15–17,19,30

5.5. Code Clone Detection

The Code Clone Detection67 task consists of detecting whether two programs are

functionally or semantically equivalent, in some cases, whether they solve the same

problem. This task is evaluated as a binary classification problem with the F1, Mean

Average Precision, and Accuracy performance metrics. In the following, we provide

a short description of them.

• F1: The F1 score is the harmonic mean between the precision and the recall.

Similar to accuracy, it is used for binary classification.

November 13, 2024 15:24 output

26

• Mean Average Precision (MAP): Same as AP, this measure is also designed

to evaluate the object detection task in general. It compares the ground-

truth bounding box with the detected box. In code clone detection, MAP

can measure the similarity between two programs.

Table 8 compares the performance metrics of a few state-of-the-art models on

the code clone detection task. These evaluation metrics are reported from previous

benchmark experiments by different models on the BigCloneBench45, POJ-10446,

and CodeNet (Python800)57 dataset.

Models
BigCloneBench POJ-104 CodeNet (Python800)

F1 MAP Accuracy

CodeBERT 94.1 82.67 95.2

GraphCodeBERT 95.0 85.16 95.9

SynCoBERT - 88.24 96.1

PLBART 93.6 86.27 95.5

CodeT5 (-base) 95.0 88.65 95.7

UniXcoder 95.2 90.52 -

Code-MVP - - 97.4

Table 8: Code Clone Detection15–17,19,30

5.6. Method Name Generation

Method Name Generation, also named as Code Summarization18,31, refers to the

prediction of a method name given the method’s body (see Figure 10). This helps

developers name functions in a meaningful way to describe their code’s functionality.

The F1 score is used for evaluating this task.

Fig. 10: An example of method name generation.

Table 9 compares the performance metrics of a few state-of-the-art models on

the method name generation task. These evaluation metrics are reported from pre-

November 13, 2024 15:24 output

27

vious benchmark experiments by different models on the PY15050 dataset, Java

Datasets (Java-small, Java-med, and Java-large)53, and ContraCode’s JavaScript

Summarization Dataset31.

Models
PY150 Java-small Java-med Java-large

ContraCode’s JavaScript

Summarization Dataset

F1 F1 F1 F1 F1

TreeBERT 39.04 51.99 61.22 67.25 -

CodeBERT 29.58 41.10 49.64 54.76 -

CuBERT 26.99 38.22 45.99 50.55 -

Code2seq 30.07 43.02 53.23 59.18 9.39

Code2vec - - - - 9.34

ContraCode - - - - 17.24

Table 9: Method Name Generation18,20,31

5.7. Defect Detection

Defect Detection47 is the task of learning and identifying whether a source code

contains any defects such as DOS (denial-of-service) attacks, resources leaks, UFA

vulnerabilities (use-after-free vulnerability, which is caused by the incorrect use of

dynamic memory during the program’s operation), etc. that can be used for software

system attacks. Accuracy is used to evaluate this binary classification task.

Table 10 compares the performance metrics of a few state-of-the-art models

on the defect detection task. These evaluation metrics are reported from previous

benchmark experiments by different models on the Devign47 and GREAT51 dataset.

Models
Devign GREAT

Accuracy Accuracy

CodeBERT 62.08 85.5

GraphCodeBERT 63.21 87.5

Code2vec 62.48 -

PLBART 63.18 86.8

CodeT5 (-base) 65.78 87.4

SynCoBERT 64.50 88.2

Code-MVP - 89.3

CoTexT (1-CC) 65.99 -

Table 10: Defect Detection16,19,26,27,30,33

5.8. Code Completion

Code Completion68 is the task of predicting the following tokens based on the

given code context. It contains two subtasks: token-level completion and line-level

completion task (see Figure 11). In the following table, we will focus on the line-

level completion task, which checks the quality of generated line of code. While

the token-level completion task tests whether the predicted token was generated

November 13, 2024 15:24 output

28

correctly or not.

Fig. 11: An example of line-level code completion.

Exact Match and Edit Sim are two metrics that are used for evaluating the code

completion task.

• Edit Sim: The Levenshtein edit similarity measures a distance correspond-

ing to the number of single-character edits necessary to transform one token

into another.

Table 11 compares the performance metrics of a few state-of-the-art models

on the code completion task. These evaluation metrics are reported from previous

benchmark experiments by different models on Py15050 and Github Java Corpus52

dataset.

Models
PY150 Github Java Corpus

EM Edit Sim EM Edit Sim

CodeGPT (-adapted) 39.65 69.84 26.43 63.03

PLBART 38.01 68.46 26.97 61.59

CodeT5 (-base) 36.97 67.12 24.80 58.31

UniXcoder 43.12 72.00 32.90 65.78

Table 11: Code Completion17,30

5.9. Code Translation

Code Translation is the task of translating a code from one programming language

into another one (see Figure 12). The current benchmark datasets support transla-

tion between Java and C#. BLEU, Accuracy, and CodeBLEU are the metrics used

frequently for evaluating models on the code translation task.

Table 12 compares the performance metrics of a few state-of-the-art models

on the code translation task. These evaluation metrics are reported from previous

benchmark experiments by different models on CodeTrans15,30 dataset.

November 13, 2024 15:24 output

29

Fig. 12: An example of code translation.

Models

CodeTrans

Java to C# C# to Java

BLEU Accuracy CodeBLEU BLEU Accuracy CodeBLEU

CodeBERT 79.92 59.00 85.10 72.14 58.80 79.41

GraphCodeBERT 80.58 59.40 - 72.64 58.80 -

PLBART 83.02 64.60 - 78.35 65.00 -

SynCoBERT 80.75 60.40 84.85 76.52 61.30 82.22

CodeT5 (-base) 84.03 65.90 - 79.87 66.90 -

Table 12: Code Translation15,16,26,27,30

5.10. Code-to-Code Search

With Code-to-Code Search17, we focus mainly on same language code search for

consistency and fairness across models. This task involves retrieving the most se-

mantically similar code to a given code query. MAP is the metric which can be used

for evaluating code-to-code search.

Table 13 compares the performance metrics of a few state-of-the-art models on

the code-to-code search task. These evaluation metrics are reported from previous

benchmark experiments by different models on CodeNet57 dataset.

Models
CodeNet (Python800) CodeNet (Ruby) CodeNet (Python) CodeNet (Java)

MAP MAP MAP MAP

CodeBERT 86.10 13.55 14.39 7.62

GraphCodeBERT 88.80 17.01 19.34 13.31

PLBART 86.70 18.60 19.55 10.41

SynCoBERT 89.2 - - -

Code-MVP 91.50 - - -

UniXcoder - 29.05 30.15 16.12

CodeT5 (-base) 88.10 18.22 17.83 10.18

Table 13: Code-to-Code Search17,19

November 13, 2024 15:24 output

30 REFERENCES

6. Conclusion and Future Work

Automatic understanding and analysis of the structure and semantics of codes writ-

ten in a Programming Language (PL) is of paramount importance. It helps build

smart tools facilitating a more efficient software development process. Moreover,

effective code representation learning can serve as a fundamental building block

for many downstream tasks in PLs. In this paper, we present the current state-

of-the-art models and compare their performance on PL downstream tasks such

as code generation, code summarization, etc. We provide the most recent publicly

available datasets and available codes. While there are many advancements in rep-

resentation learning approaches for different PLs, many models, such as Codex28,

ContraCode31, CuBERT32, Code-MVP19 only support one specific programming

language. Moreover, some downstream tasks (e.g., code translation, code repair)

don’t have many programming languages to benchmark in the available datasets

(e.g., code translation has only C# to Java, and Code repair has only Java). These

could be the subjects of further research in the future.

References

1. J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, Proceedings of the 2019

Conference of the North American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies, Volume 1 (Long and Short

Papers), Minneapolis, Minnesota, 2019, pp. 4171–4186.

2. M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoy-

anov and L. Zettlemoyer, Proceedings of the 58th Annual Meeting of the Asso-

ciation for Computational Linguistics, Online, 2020, pp. 7871–7880.

3. Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-

moyer and V. Stoyanov, CoRR, 2019, abs/1907.11692,.

4. C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou,

W. Li and P. J. Liu, Journal of Machine Learning Research, 2020, 21, 1–67.

5. A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., tech. rep., OpenAI,

2018.

6. M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee and

L. Zettlemoyer, CoRR, 2018, abs/1802.05365,.

7. Z. Yang, Z. Dai, Y. Yang, J. G. Carbonell, R. Salakhutdinov and Q. V. Le,

CoRR, 2019, abs/1906.08237,.

8. Q. Le and T. Mikolov, Proceedings of the 31st International Conference on

Machine Learning, Bejing, China, 2014, pp. 1188–1196.

9. T. Mikolov, I. Sutskever, K. Chen, G. Corrado and J. Dean, Proceedings of

the 26th International Conference on Neural Information Processing Systems -

Volume 2, Red Hook, NY, USA, 2013, p. 3111–3119.

10. Y. Liao, Y. Wang and Y. Liu, IEEE Transactions on Image Processing, 2017,

26, 2839–2852.

11. N. Reimers and I. Gurevych, Proceedings of the 2019 Conference on Empiri-

November 13, 2024 15:24 output

REFERENCES 31

cal Methods in Natural Language Processing and the 9th International Joint

Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong,

China, 2019, pp. 3982–3992.

12. Y. Kim, Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), Doha, Qatar, 2014, pp. 1746–1751.

13. Y. Zhang, Y. Xia, Y. Liu and W. Wang, Proceedings of the 2015 Conference of

the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Denver, Colorado, 2015, pp. 1262–1267.

14. J. Pennington, R. Socher and C. Manning, Proceedings of the 2014 Conference

on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar,

2014, pp. 1532–1543.

15. D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. LIU, L. Zhou, N. Duan, A. Svy-

atkovskiy, S. Fu, M. Tufano, S. K. Deng, C. Clement, D. Drain, N. Sundaresan,

J. Yin, D. Jiang and M. Zhou, International Conference on Learning Represen-

tations, 2021.

16. X. Wang, Y. Wang, F. Mi, P. Zhou, Y. Wan, X. Liu, L. Li, H. Wu, J. Liu and

X. Jiang, preprint, arXiv:2108.04556, 2021.

17. D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou and J. Yin, Proceedings of the 60th

Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), Dublin, Ireland, 2022, pp. 7212–7225.

18. X. Jiang, Z. Zheng, C. Lyu, L. Li and L. Lyu, Proceedings of the Thirty-Seventh

Conference on Uncertainty in Artificial Intelligence, 2021, pp. 54–63.

19. X. Wang, Y. Wang, Y. Wan, J. Wang, P. Zhou, L. Li, H. Wu and J. Liu, ArXiv,

2022, abs/2205.02029,.

20. U. Alon, O. Levy and E. Yahav, preprint, arXiv:1808.01400, 2018.

21. U. Alon, M. Zilberstein, O. Levy and E. Yahav, Proc. ACM Program. Lang.,

2019, 3, 1–29.

22. H.-H. Wei and M. Li, Proceedings of the 26th International Joint Conference

on Artificial Intelligence, 2017, p. 3034–3040.

23. J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang and X. Liu, 2019 IEEE/ACM

41st International Conference on Software Engineering (ICSE), 2019, pp. 783–

794.

24. W. Wang, G. Li, B. Ma, X. Xia and Z. Jin, 2020 IEEE 27th International

Conference on Software Analysis, Evolution and Reengineering (SANER), 2020,

261–271.

25. Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,

T. Liu, D. Jiang and M. Zhou, Findings of the Association for Computational

Linguistics: EMNLP 2020, Online, 2020, pp. 1536–1547.

26. Y. Wang, W. Wang, S. Joty and S. C. Hoi, Proceedings of the 2021 Conference

on Empirical Methods in Natural Language Processing, Online and Punta Cana,

Dominican Republic, 2021, pp. 8696–8708.

27. W. Ahmad, S. Chakraborty, B. Ray and K.-W. Chang, Proceedings of the 2021

Conference of the North American Chapter of the Association for Computa-

November 13, 2024 15:24 output

32 REFERENCES

tional Linguistics: Human Language Technologies, Online, 2021, pp. 2655–2668.

28. M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan,

H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger,

M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder,

M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P. Such,

D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H.

Guss, A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain,

W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa,

A. Radford, M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. Mc-

Grew, D. Amodei, S. McCandlish, I. Sutskever and W. Zaremba, CoRR, 2021,

abs/2107.03374,.

29. A. Elnaggar, W. Ding, L. Jones, T. Gibbs, T. Feher, C. Angerer, S. Severini,

F. Matthes and B. Rost, CoRR, 2021, abs/2104.02443,.

30. S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. B. Clement,

D. Drain, D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou, M. Tufano,

M. Gong, M. Zhou, N. Duan, N. Sundaresan, S. K. Deng, S. Fu and S. Liu,

CoRR, 2021, abs/2102.04664,.

31. P. Jain, A. Jain, T. Zhang, P. Abbeel, J. Gonzalez and I. Stoica, Proceedings

of the 2021 Conference on Empirical Methods in Natural Language Processing,

Online and Punta Cana, Dominican Republic, 2021, pp. 5954–5971.

32. A. Kanade, P. Maniatis, G. Balakrishnan and K. Shi, Proceedings of the 37th

International Conference on Machine Learning, 2020, pp. 5110–5121.

33. L. Phan, H. Tran, D. Le, H. Nguyen, J. Annibal, A. Peltekian and Y. Ye, Pro-

ceedings of the 1st Workshop on Natural Language Processing for Programming

(NLP4Prog 2021), Online, 2021, pp. 40–47.

34. D. E. Rumelhart, G. E. Hinton and R. J. Williams, Nature, 1986, 323, 533–536.

35. S. Hochreiter and J. Schmidhuber, Neural computation, 1997, 9, 1735–80.

36. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u.

Kaiser and I. Polosukhin, Advances in Neural Information Processing Systems,

2017.

37. H. Husain, H. Wu, T. Gazit, M. Allamanis and M. Brockschmidt, CoRR, 2019,

abs/1909.09436,.

38. T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,

A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,

G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter,

C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner,

S. McCandlish, A. Radford, I. Sutskever and D. Amodei, Advances in Neural

Information Processing Systems, 2020, pp. 1877–1901.

39. T. Gao, X. Yao and D. Chen, Proceedings of the 2021 Conference on Empirical

Methods in Natural Language Processing, Online and Punta Cana, Dominican

Republic, 2021, pp. 6894–6910.

40. C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou,

W. Li and P. J. Liu, Journal of Machine Learning Research, 2020, 21, 1–67.

November 13, 2024 15:24 output

REFERENCES 33

41. A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al., OpenAI

blog, 2019, 1, 9.

42. I. Sutskever, O. Vinyals and Q. V. Le, Advances in Neural Information Pro-

cessing Systems, 2014.

43. M. Hasan, T. Muttaqueen, A. A. Ishtiaq, K. S. Mehrab, M. M. A. Haque,

T. Hasan, W. Ahmad, A. Iqbal and R. Shahriyar, Findings of the Association

for Computational Linguistics: ACL-IJCNLP 2021, Online, 2021, pp. 210–218.

44. D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo, C. Burns,

S. Puranik, H. He, D. Song and J. Steinhardt, Thirty-fifth Conference on Neural

Information Processing Systems Datasets and Benchmarks Track (Round 2),

2021.

45. J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy and M. M. Mia, 2014 IEEE

International Conference on Software Maintenance and Evolution, 2014, pp.

476–480.

46. L. Mou, G. Li, L. Zhang, T. Wang and Z. Jin, Proceedings of the Thirtieth

AAAI Conference on Artificial Intelligence, 2016, p. 1287–1293.

47. Y. Zhou, S. Liu, J. Siow, X. Du and Y. Liu, Proceedings of the 33rd International

Conference on Neural Information Processing Systems, Red Hook, NY, USA,

2019, p. 10197–10207.

48. J. Huang, D. Tang, L. Shou, M. Gong, K. Xu, D. Jiang, M. Zhou and N. Duan,

Proceedings of the 59th Annual Meeting of the Association for Computational

Linguistics and the 11th International Joint Conference on Natural Language

Processing (Volume 1: Long Papers), Online, 2021, pp. 5690–5700.

49. P. Yin, B. Deng, E. Chen, B. Vasilescu and G. Neubig, Proceedings of the

15th International Conference on Mining Software Repositories, New York, NY,

USA, 2018, p. 476–486.

50. V. Raychev, P. Bielik and M. Vechev, SIGPLAN Not., 2016, 51, 731–747.

51. V. J. Hellendoorn, C. Sutton, R. Singh, P. Maniatis and D. Bieber, International

Conference on Learning Representations, 2020.

52. M. Allamanis and C. Sutton, Proceedings of the 10th Working Conference on

Mining Software Repositories, 2013, p. 207–216.

53. M. Allamanis, H. Peng and C. Sutton, International Conference on Machine

Learning (ICML), 2016.

54. M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White and D. Poshyvanyk,

ACM Trans. Softw. Eng. Methodol., 2019, 28, 1–29.

55. S. Iyer, I. Konstas, A. Cheung and L. Zettlemoyer, Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing, Brussels,

Belgium, 2018, pp. 1643–1652.

56. I. Polosukhin and A. Skidanov, Neural Program Search: Solving Data Process-

ing Tasks from Description and Examples, 2018, https://openreview.net/

forum?id=B1KJJf-R-.

57. R. Puri, D. S. Kung, G. Janssen, W. Zhang, G. Domeniconi, V. Zolotov,

J. Dolby, J. Chen, M. Choudhury, L. Decker, V. Thost, L. Buratti, S. Pujar,

https://openreview.net/forum?id=B1KJJf-R-
https://openreview.net/forum?id=B1KJJf-R-

November 13, 2024 15:24 output

34 WSPC

S. Ramji, U. Finkler, S. Malaika and F. Reiss, Thirty-fifth Conference on Neu-

ral Information Processing Systems Datasets and Benchmarks Track (Round

2), 2021.

58. X. Hu, G. Li, X. Xia, D. Lo and Z. Jin, ICPC ’18: Proceedings of the 26th

Conference on Program Comprehension, 2018, pp. 200–210.

59. S. Iyer, I. Konstas, A. Cheung and L. Zettlemoyer, Proceedings of the 54th

Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), Berlin, Germany, 2016, pp. 2073–2083.

60. W. Wang, G. Li, B. Ma, X. Xia and Z. Jin, 2020 IEEE 27th International

Conference on Software Analysis, Evolution and Reengineering (SANER), 2020,

pp. 261–271.

61. A. T. Nguyen, T. T. Nguyen and T. N. Nguyen, 2015 30th IEEE/ACM In-

ternational Conference on Automated Software Engineering (ASE), 2015, pp.

585–596.

62. X. Chen, C. Liu and D. Song, Proceedings of the 32nd International Confer-

ence on Neural Information Processing Systems, Red Hook, NY, USA, 2018, p.

2552–2562.

63. S. Iyer, I. Konstas, A. Cheung and L. Zettlemoyer, Proceedings of the 54th

Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), Berlin, Germany, 2016, pp. 2073–2083.

64. X. Wang, Y. Wang, Y. Wan, F. Mi, Y. Li, P. Zhou, J. Liu, H. Wu, X. Jiang and

Q. Liu, Findings of the Association for Computational Linguistics: ACL 2022,

Dublin, Ireland, 2022, pp. 9–19.

65. K. Papineni, S. Roukos, T. Ward andW.-J. Zhu, Proceedings of the 40th Annual

Meeting on Association for Computational Linguistics, USA, 2002, p. 311–318.

66. S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan, M. Zhou,

A. Blanco and S. Ma, CoRR, 2020, abs/2009.10297,.

67. J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy and M. M. Mia, 2014 IEEE

International Conference on Software Maintenance and Evolution, 2014, pp.

476–480.

68. M. Allamanis and C. Sutton, 2013 10th Working Conference on Mining Software

Repositories (MSR), 2013, pp. 207–216.

	Introduction
	Background
	Representation Learning
	Structures in Programming Languages

	Representation Learning Models for Programming Languages
	Transformer Models
	CodeBERT
	GraphCodeBERT
	CodeT5
	PLBART
	Codex
	CodeTrans
	UniXcoder
	TreeBERT
	ContraCode
	CuBERT
	Code-MVP
	CodeGPT
	SynCoBERT
	CoTexT

	Other Non-Transformer Models
	Code2vec
	Code2seq

	Available Code

	Datasets
	CodeXGLUE
	CodeSearchNet
	CoDesc
	APPS
	HumanEval
	BigCloneBench
	POJ-104
	Devign
	CSN
	AdvTest
	CoSQA
	CoNaLa
	PY150
	GREAT
	GitHub Java Corpus
	Java Datasets
	Bugs2Fix
	CONCODE
	AlgoLisp
	CodeTrans
	CodeNet
	DeepCom's Java Dataset
	ContraCode’s Datasets
	CODE-NN's Dataset

	Downstream Tasks
	Code Generation
	Code Summarization
	Code Repair
	Code Search
	Code Clone Detection
	Method Name Generation
	Defect Detection
	Code Completion
	Code Translation
	Code-to-Code Search

	Conclusion and Future Work

